
Local Policies Enable Zero-shot Long-horizon Manipulation

Murtaza Dalal∗1 Min Liu∗1 Walter Talbott2 Chen Chen2

Deepak Pathak1 Jian Zhang2 Ruslan Salakhutdinov1

1Carnegie Mellon University, 2Apple

Fig. 1: Zero-shot Long-horizon Manipulation Our approach trains a library of generalist manipulation skills in simulation and transfers
them zero-shot to long-horizon manipulation tasks. We show a single, text-conditioned agent can manipulate unseen objects, in arbitrary
poses and scene configurations, across long-horizons in the real world, solving challenging manipulation tasks with complex obstacles.

Abstract— Sim2real for robotic manipulation is difficult due
to the challenges of simulating complex contacts and generating
realistic task distributions. To tackle the latter problem, we
introduce ManipGen, which leverages a new class of policies
for sim2real transfer: local policies. Locality enables a variety
of appealing properties including invariances to absolute robot
and object pose, skill ordering, and global scene configuration.
We combine these policies with foundation models for vision,
language and motion planning and demonstrate SOTA zero-
shot performance of our method to Robosuite benchmark
tasks in simulation (97%). We transfer our local policies from
simulation to reality and observe they can solve unseen long-
horizon manipulation tasks with up to 8 stages with significant
pose, object and scene configuration variation. ManipGen
outperforms SOTA approaches such as SayCan, OpenVLA,
LLMTrajGen and VoxPoser across 50 real-world manipulation
tasks by 36%, 76%, 62% and 60% respectively. Video results
at mihdalal.github.io/manipgen

I. Introduction
How can we develop generalist robot systems that plan,

reason, and interact with the world like humans? Tasks that
humans solve during their daily lives, such as those shown
in Figure 1, are incredibly challenging for existing robotics
approaches. Cleaning the table, organizing the shelf, putting

*equal contribution.

items away inside drawers, etc. are complex, long-horizon
problems that require the robot to act capably and consis-
tently over an extended period of time. Furthermore, such a
generalist robot should be able to do so without requiring
task-specific engineering effort or demonstrations. Although
large-scale data-driven learning has produced generalists for
vision and language [1], such models don’t yet exist in
robotics due to the challenges of scaling data collection. It
often takes significant manual labor cost and years of effort to
just collect datasets on the order of 100K-1M trajectories [2]–
[5]. Consequently, generalization is limited, often to within
centimeters of an object’s pose for complex tasks [6], [7].

Instead, we seek to use a large-scale approach via
simulation-to-reality (sim2real) transfer, a cost-effective tech-
nique for generating vast datasets that has enabled training
generalist policies for locomotion which can traverse com-
plex, unstructured terrain [8]–[13]. While sim2real transfer
has shown success in industrial manipulation tasks [14]–
[16], including with high-dimensional hands [17]–[20], these
efforts often involve training and testing on the same task
in simulation. Can we extend sim2real to open-world ma-
nipulation, where robots need to solve any task from text
instruction? The core bottlenecks are: 1) accurately simu-
lating contact dynamics [21] - for which strategies such as

https://mihdalal.github.io/manipgen/

Fig. 2: Training Environments We train local policies (left to right) on picking, placing, handle grasping, opening and closing.

domain randomization [17], [22], SDF contacts [14], [15],
[23], and real world corrections [16] have shown promise,
2) generating all possible scene and task configurations to
ensure trained policies generalize and 3) acquiring long-
horizon behaviors themselves, which may require potentially
intractable amounts of data for as the horizon grows.

To address points 2) and 3), our solution is to note that
for many manipulation tasks of interest, the skill can be
simplified to two steps: achieving a pose near a target object,
then performing manipulation. The key idea is that of locality
of interaction. Policies that observe and act in a region local
to the target object of interest are by construction:
• absolute pose invariant: they reason about a much smaller
set of relative poses between the objects and the robot.
• skill order invariant: transition from the termination set of
one policy and initiation set of the next via motion planning.
• scene configuration invariant: they solely observe the
local region around the point of interaction.

We propose a novel approach that leverages the strong
generalization capabilities of existing foundation models
such as Visual Language Models (VLMs) for decomposing
tasks into sub-problems [1], processing and understanding
scenes [24] and planning collision-avoidant motions [25].
Specifically, given a text prompt, our approach outputs a plan
to solve the task (using a VLM), estimates where to go and
moves the robot accordingly (using motion planning) and
deploys local policies to perform interaction. As a result, a
simple scene generation approach (Fig. 2) can produce strong
transfer results across many manipulation tasks (Fig. 1).

Our contribution is an approach to training agents at scale
solely in simulation that are capable of solving a vast set of
long-horizon manipulation tasks in the real world zero-shot.
Our method generalizes to unseen objects, poses, receptacles
and skill order configurations. To do so, our method, Manip-
Gen, 1) introduces a novel policy class for sim2real transfer
2) proposes techniques for training policies at scale in
simulation 3) and deploys policies via integration with VLMs
and motion planners. We perform a thorough, real world
evaluation of ManipGen on 50 long-horizon manipulation
tasks in five environments with up to 8 stages, achieving
a success rate of 76%, outperforming SayCan, OpenVLA,
LLMTrajGen and VoxPoser by 36%, 76%, 62% and 60%.

II. RelatedWork

Long-horizon Robotic Manipulation Sense-Plan-Act (SPA)
has been explored extensively over the past 50 years [26]–

[31]. Traditionally, SPA assumes access to accurate state
estimation, a well-defined model of the environment and low-
level control primitives. SPA, while capable of generalizing
to a broad set of tasks, can require manual engineering
and systems effort to set up [32], struggles with contact-
rich interactions [33], [34] and fails due to state-estimation
errors [35]. By contrast, our method can be deployed to
new tasks using generalist models which have minimal
setup cost, train polices for contact-rich interactions and
handle state-estimation issues by training with significant
local randomization.
Zero/Few-shot Manipulation Using Foundation Models
The robotics community has begun to investigate VLM’s
capabilities for controlling robots in a zero/few-shot man-
ner [36]–[44]. Work such as SayCan [36] and TidyBot [39]
are similar to our own. They behavior clone / design a
library of skills and use LLMs to perform task planning over
the set of skills. Our work focuses primarily on designing
the structure of skills for low-level control, decomposing
them into motion planning and sim2real local policies.
On the other hand, works such as LLMTrajGen [45] and
CoPa [46] directly prompt VLMs to output sequences of
end-effector poses, but are limited to short horizon tasks.
Finally, PSL [44] and Boss [42] use LLMs to accelerate the
RL training process for long-horizon tasks, yet must train
on the test task, unlike our method which can solve a wide
array of manipulation tasks zero-shot.
Sim2real approaches in robotics Transfer of RL policies
trained with procedural scene generation has produced gen-
eralist robot policies for locomotion [8]–[12]. However, the
robot is often trained for a single skill, such as walking, or
a limited set of similar skills, such as walking at different
velocities or headings. Sim2real transfer has also been ex-
plored for transferring dexterous manipulation skills [17]–
[19], [22], [47] and contact-rich manipulation [14]–[16].
In our work, we train a variety of skills for manipulation
and demonstrate zero-shot capabilities on a large set of
unseen tasks. We outperform methods that use end-to-end
sim2real transfer [48] as well as real world corrections [16],
ManipGen is orthogonal to human correction approaches,
and can benefit from real-world data as well.

III. Methods

To build agents capable of generalizing to a wide class
of long-horizon robotic manipulation tasks, we propose a
novel approach (ManipGen) that hierarchically decomposes

Phase 1: Acquire Object-Specific RL Experts at Scale Deployment: Zero-shot Long-Horizon ManipulationPhase 2: Learn Generalists via Large-Scale Distillation

User: Robot, heat up my
rice for me please

Local Proprioception:
 ⟨Ot

loc,ee, ·Ot
loc,ee⟩

Privileged StateRobot State

State-based
RL Policy

II. Train 3.5K+ single-object RL experts using PPO

…

…

ResN
et18

Asset Affordance Keypoints

I. Process assets in simulation

 at = ⟨Δx, Δθ⟩

Vision Language Model

(handle, open), (rice, pick),
(microwave, place), (handle, close)

Multi-task DAgger

 O0
loc,seg

 O0
loc,depth

 Ot
loc,depth

Motion Planning (MP)

(MP)

(MP)

Pick PlaceOpen

Close

(MP)

Fig. 3: ManipGen Method Overview (left) Train 1000s of RL experts in simulation using PPO (middle) Distill single-task RL experts
into generalist visuomotor policies via DAgger (right) Text-conditioned long-horizon manipulation via task decomposition (VLM), pose
estimation and goal reaching (Motion Planning) and sim2real transfer of local policies

manipulation tasks, takes advantage of the generalization
capabilities of foundation models for vision and language and
uses large-scale learning with our proposed policy class to
learn manipulation skills. We begin by describing our frame-
work (Fig. 3) and formulate local policies. We then discuss
how to train local policies for sim2real transfer. Finally, we
outline deployment: integrating VLMs, Motion Planning and
sim2real policy learning to foster broad generalization.

A. Framework

We can decompose any task the robot needs to complete
into a problem of learning a set of temporally abstracted
actions (skills) as well as a policy over those skills [49].
Given a language goal g, and observation O, we can select
our high-level policy, pθ(gk |g,O) to be a pre-trained VLM,
where gk is the k’th language subgoal. The choice of skill will
be extracted from gk below. State-of-the-art VLMs have been
shown to be capable of decomposing robotics tasks into high-
level language subgoals [36]–[39] because they are trained
using a vast corpus of internet-scale data and have captured
powerful, visually grounded semantic priors for what various
real world tasks look like.

Any policy class can be used to define the skills, de-
noted as pϕk (at |gk,Ot), which take in the kth sub-goal
gk and current observation Ot. However, note that many
manipulation skills (e.g. picking, pushing, turning, etc.)
can be decomposed into a policy πreach to achieve tar-
get poses near objects, Xtarg,k, followed by policy πloc
for contact-rich interaction. Accordingly, pϕk (at |gk,Ot) =
πreach(τreach|gk,Ot)πloc(at

loc|O
t
loc). To implement πreach, we

need to interpret language sub-goals gk to take the robot from
its current configuration qk,i to some target configuration qk, f
such that Xee (the end-effector pose) is close to Xtarg,k. Thus,
we structure the VLM’s sub-goal predictions, gk, as tuples
containing the following information (object, skill). We then
interpret these plans into robot poses by pairing any language
conditioned pose estimator or affordance model (to predict
Xtarg,k) with an inverse kinematics routine (to compute qk, f).
Motion planning is used to implement πreach by predicting

trajectories τreach to achieve the target configuration qk, f
while avoiding collisions.

Finally, we instantiate local policies (πloc) to be invariant to
robot poses as well as object poses, order of skill execution
and scene configurations with: 1) initialization region sinit
near a target region/object of interest which has pose Xtarg,k,
2) local observations Ot

loc, independent of the absolute con-
figuration of the robot and scene and only observing the
environment around the interaction region and 3) actions
at

locrelative to the local observations. Overall:

πloc(at
loc|O

t
loc), sinit = {s | ||Xee−Xtarg,k ||

2 < ϵ}

B. Training Local Policies for Sim2Real Manipulation

To train local policies, we adapt the standard two-phase
training approach [11], [12], [16], [19], [47], [50] in which
we first train state-based expert policies using RL, then distill
them into visuomotor policies for transfer. Although local
policies can generalize automatically across scene arrange-
ments, robot configurations, and object poses, they must be
trained across a wide array of objects to foster object-level
generalization. To do so, we train a vast array of single-object
state-based RL policies and then distill them into generalist
visuomotor policies per skill.

While such local policies can cover a broad set of manip-
ulation skills (pick and place, articulated/deformable object
manipulation, assembly, etc.), in this work, we focus on train-
ing the following skills πloc: pick, place, grasp handle, open
and close (Fig. 2) as a minimal skill library to demonstrate
generalist manipulation capabilities for a specific class of
tasks. Pick grasps any free rigid objects. Place sets the object
down near the initial pose. Grasp Handle grasps the handle
of any door or drawer. Open and Close pull or push doors
and drawers to open or close them.

To train robust local policies via RL, they require a diverse
set of training environments, carefully designed observations
and action spaces and well-defined reward functions enabling
them to acquire behaviors in a manner that will transfer to
the real world. We describe how to in this section.

Data Generation We need to first specify a set of objects
to manipulate, an environment, and an initial local state
distribution. For pick/place, we train on 3.5K objects from
UnidexGrasp [51], randomly spawned on a table top. To
ensure local policies can learn obstacle avoidance and con-
strained manipulation, we spawn clutter objects and obstacles
in the scene. We sample initial poses in a half-sphere, with
the gripper pointing toward the object (for picking) and near
the placement location (for placing). For local articulated
object manipulation, the region of interaction only contains
the handle (2.6K objects of Partnet [52]) and door/drawer
surface (designed as cuboids). We randomize the size, shape,
position, orientation, joint range, friction and damping coef-
ficients, covering a wide set of real world articulated objects.
We sample initial poses in a half-sphere around the handle
(for grasp handle) and a randomly sampled initial joint
pose (open/close). Finally we collect valid pre-grasp poses
(antipodal sampling [53]) for picking and grasping handles
and rest poses (from UnidexGrasp) for learning placing.

Observations We use a single observation space for all
RL experts, accelerating learning by incorporating signifi-
cant amounts of privileged information. Blind local policies
can struggle to learn to manipulate objects with complex
geometries as it is often necessary to have some notion
of object shape to know how to manipulate. Thus, we
propose to use a low-dimensional representation of the object
shape by performing Farthest Point Sampling (FPS) on
the object mesh with a small set number of desired key-
points K (16). Furthermore, to ease the burden of credit
assignment and thereby accelerate learning, we incorporate
the individual reward components {r} and an indicator for
the final observation 1{t = T }. RL observations are Ot =

⟨Xt
ee, ˙Xeet

,Xt
ob j, {FPS t

ob j}
K
k=1, {r}

t,1{t = T }⟩

Actions We use the action space from Industreal [14] which
has been shown to successfully transfer manipulation poli-
cies from sim2real for precise assembly tasks. Our policies
predict delta pose targets for a Task Space Impedance (TSI)
controller, where a = [∆x;∆θ], where ∆x is a position error
and ∆θ is a axis-angle orientation error.

Rewards We train RL policies (πlock) in simulation using
reward functions we design to elicit the desired behavior per
skill k. We propose a reward framework that encompasses our
local skills: r = c1ree+ c2rob j+ c3ree,ob j+ c4raction+ c5rsucc. r
specifies behavior for a broad range of manipulation tasks
which involve moving the end-effector to specific poses
(often right before contact) as well as a target object to
desired poses and need to do so while maintaining certain
constraints on the relative motion between the end-effector
and the object as well as pruning out undesirable actions. ree
encourages reaching/maintaining specific end-effector poses,
rob j restricts/encourages specific object poses or joint con-
figurations, ree,ob j constrains the end-effector motion relative
to the object(s) in the scene, raction restricts or penalizes
undesirable actions and rsucc is a binary success reward.
Please see the website for detailed descriptions of the task
specific reward functions.

C. Generalist Policies via Distillation

In order to convert single-object, privileged policies into
real world deployable skills, we distill them into multi-object,
generalist visuomotor policies using DAgger [54].
Multitask Online Imitation Learning Empirically the stan-
dard, off-policy version of DAgger with interleaved behavior
cloning (to convergence) and large dataset collection does
not perform well. The policy ends up modeling data from
policies whose state visitation distributions deviate signifi-
cantly from the current policy. On the other hand, on-policy
variants of DAgger, which take a single gradient step per
environment step [10], [19], [47], [50], can produce unstable
results in the multi-task regime since the policy only gets
data from a single object in a batch. We introduce a simple
variant of DAgger which smoothly trades off between the
two extremes by incorporating a replay buffer of size K
that holds the last K ∗ B trajectories in memory. Training
alternates between updating the agent for a single epoch on
this buffer and collecting a batched set of trajectories (size
B) from the environment for the current object.
Observation Space Design for Locality For local policies
to transfer effectively to the real robot, the observation space
and augmentations must be designed with transfer in mind.
To imitate a privileged expert, our observation space must be
expressive - providing as much information as possible to the
agent. The observations must also be local to enable all of
the properties of locality, and augmentations must ensure the
policy is robust to noisy real world vision.

Local observations use wrist camera depth maps. Depth
maps transfer well from sim2real for locomotion [10]–[12],
[50], and wrist views are inherently local and improve ma-
nipulation performance [55]–[57]. To further enforce locality,
we clamp depth values to a max depth of 30cm and then nor-
malize the values to between 0 and 1. Since local wrist-views
often get extremely close to the object during execution, it
can become difficult for the agent to understand the overall
object shape. Thus, we include the initial local observation
O0

loc,depth at every step with a segmentation mask of the target
object (O0

loc,seg) so that the local policy is aware of which ob-
ject to manipulate. We transform absolute proprioception into
local by computing observations relative to the first time-step
(Oloc,ee = [X0

ee,t − X0
ee]) and incorporate velocity information

(˙Oloc,ee,t), which improves transfer. Our observation space is
Ot

loc = ⟨O
t
loc,depth,O

0
loc,seg,O

0
loc,depth,O

t
loc,ee,

˙Ot
loc,ee⟩.

Augmentations To enable robustness to noisy real world
observations, namely edge artifacts and irregular holes, we
augment the clean depth maps we obtain in simulation.
For edge artifacts, in which we observe dropped pixels and
noisiness along edges, we use the correlated depth noise via
bi-linear interpolation of shifted depth from [58] which tends
to model this effect well. We also observe that real world
depth maps tend to have randomly placed irregular holes
(pixels with depth 0). As a result, we compute random pixel-
level masks and Gaussian blur them to obtain irregularly
shaped masks that we then apply to the depth image. We also
use random camera cropping augmentations which has been

shown to improve visuomotor learning performance [57].

D. Zero-shot Text Conditioned Manipulation

Given our framework and trained local policies, how do
we now deploy them in the real-world, to solve a wide array
of manipulation tasks in a zero shot manner?

To enable our system to solve long-horizon tasks,
pθ(gk |g,O), decomposes the task into a skill chain to execute
given task prompt g. We implement pθ as GPT-4o, a SOTA
VLM. Given the task prompt g, descriptions of the pre-
trained local skills and how they operate, and images of
the scene O, we prompt GPT-4o to give a plan for the task
structured as a list of (object, skill) tuples. For example, for
the task shown in Fig. 3, GPT outputs ((handle, open), (rice
pick), (microwave, place), (handle, close)). We then need a
language conditioned pose estimator (to compute Xtarg,k) that
generalizes broadly; we opt to use Grounded SAM [24] due
to its strong open-set segmentation capabilities. To estimate
Xtarg,k, we can segment the object pointcloud, average it to
get a position and use its surface normals to select a collision-
free orientation. One issue is that Grounding Dino [59], used
in Grounded SAM, is very sensitive to the prompt. As a
result, we pass its predictions back into GPT-4o to adjust
the object prompts to capture the correct object.

For predicting τreach, while any motion planner can be
used, we select Neural MP [25] due to its fast planning
time (2s) and strong real-world planning performance. Given
Xtarg,k, we compute target joint state qk, f , plan with Neural
MP open-loop and execute the predicted τreach on the robot
using a PID joint controller. We then execute the appropriate
local policy (as predicted by the VLM) on the robot to
perform manipulation. We alternate between motion planning
and deploying local policies until the task is complete.
Finally, we note that the particular choice of models is
orthogonal to our method. For additional details regarding
all aspects of our method, please see the Appendix.

IV. Experimental Setup and Results

We pose the following experimental questions that guide
our evaluation: 1) Can an autonomous agent control a robot
to perform a wide array of long-horizon manipulation tasks
zero-shot? 2) How does our approach compare to methods
that learn from online interaction? 3) For direct sim2real
transfer, how do Local Policies compare against end-to-end
learning and other transfer techniques that leverage human
correction data? 4) To what degree do the design decisions
made in ManipGen affect the performance of the method?

A. Training and Deployment Details

Architecture and Training We train all RL policies at
scale using PPO [60] in GPU-parallelized simulation [61].
We train for 500 epochs, with an environment batch size
of 8192 and max episode length of 120 steps per skill. To
learn visuomotor policies to perform high-frequency (60 Hz)
end-effector control, we pair Resnet-18 [62] and Spatial Soft-
max [63] with a two layer MLP decoder (4096 hidden units).
Finally, for training, minimizing Mean Squared Error loss

Bread Can Milk Cereal CanBread CerealMilk Average

Stages 2 2 2 2 4 4

Online Learning:
DRQ-v2 52% 32% 2% 0% 0% 0% 14%
RAPS 0% 0% 0% 0% 0% 0% 0%
PSL 100% 100% 100% 100% 90% 85% 96%

Zero-Shot:
TAMP 90% 100% 85% 100% 72% 71% 86%
SayCan 93% 100% 90% 63% 63% 73% 80%
Ours 100% 100% 99% 97% 97% 91% 97%

TABLE I: Robosuite Benchmark Results. ManipGen zero-shot
transfers to Robosuite, outperforming end-to-end and hierarchical
RL methods as well as traditional and LLM planning methods.

is sufficient for learning multitask policies via DAgger. In
early experiments, we found that our architecture performs
comparably to using LSTMs [64], Transformers [65], and
ACT [6] and is faster to train (5-10x) and deploy (2x).
Hardware Setup We use the Franka Panda robot arm
with the UMI [66] gripper fingertips and a wrist-mounted
Intel Realsense d405 camera for obtaining local observations
(84x84 resolution). Note for local observations, using depth
sensing that is accurate at short range (such as the d405)
is crucial to obtaining high quality local depth maps. We
perform hole-filling and smoothing to clean the depth maps.
Following Transic [16], we do not model the compliance of
the UMI gripper in simulation, but instead transfer policies
trained with rigid fingertips to the real world, which performs
well in practice. For real world control, we use a TSI end-
effector controller at 60 Hz with (Leaky) Policy Level Action
Integration (PLAI) [14]. We use Leaky PLAI with .001
position action scale, .05 rotation action scale for pick and
.005 rotation action scale for all other skills. Finally, we use
4 calibrated Intel Realsense d455 cameras for global view
observations (640x480).

B. Simulation Comparisons and Analysis

Robosuite Benchmark Results We first evaluate against
the long-horizon manipulation tasks used in PSL [44]
from the Robosuite benchmark [67] in simulation which
has a set of challenging long-horizon manipulation tasks
(PickPlace{Bread, Milk, Cereal, CanBread, CerealMilk}).
We compare to end-to-end RL methods [68], hierarchical
RL [44], [69], task and motion planning [70] and LLM
planning [36]. In these experiments, we zero-shot transfer our
trained policies to Robosuite and evaluate their performance
against methods that use task specific data (Tab. I). Manip-
Gen outperforms or matches PSL, the SOTA method on these
tasks, across the board, achieving an average success rate of
97.33% compared to 95.83%. These results demonstrate that
ManipGen can outperform methods that are trained on the
task of interest [44], [68], [69] as well as planning methods
that have access to privileged state info [36], [70].
ManipGen Analysis and Ablations. We study design deci-
sions proposed in our method by training single object pick
policies on 5 objects (remote, can, bowl, bottle, camera) and
testing on held out poses. We begin with our observation
space design choices: ManipGen achieves 97.44% success
rate in comparison to (94.33%, 96.64%, 97.25%) for remov-

Tasks Ours Transic Direct
Transfer

DR. & Data
Aug. [48] HG-Dagger [75] IWR [76] BC [72]

Stabilize 95% 100% 10% 35% 65% 65% 40%
Reach and Grasp 95% 95% 35% 60% 30% 40% 25%

Insert 80% 45% 0% 15% 35% 40% 10%

Avg 90% 80% 15% 36.7% 43.3% 48.3% 25%

TABLE II: Transic Benchmark Results ManipGen achieves
SOTA results on the Transic [16] benchmark in terms of task
success rate without using any real world data, outperforming direct
transfer, imitation learning and human-in-the-loop methods.

ing key-point observations, success observation and reward
observations respectively. Incorporating key-point observa-
tions is the most impactful change, enabling the agent to
perceive the shape of the target object. Next, we evaluate
how the level of locality (the size of the region around the
target object that we initialize over) affects learning perfor-
mance. At convergence, we find that ManipGen (8cm max
distance from target) achieves 97.44% success rate while
performance diminishes with increasing distance (95.65%,
89.55%, 72.52%) for 16cm, 32cm and 64cm respectively.

For DAgger, we analyze our observation design choices
and find that including velocity information, the first ob-
servation, and changing proprioception to be relative to
the first frame are crucial to the success of our method.
While ManipGen gets 94.3% success, removing velocity info
and using absolute proprioception hurt significantly (89.92%
and 90.94%) while removing the first observation drops
performance to 93.13%. We also vary the DAgger buffer
size, from 1 (on-policy), 10, 100, and 1000 (off-policy) for
multitask training (with 3.5K objects, not 5). We find that
100 performs best, achieving 85% in simulation averaged
across 100 held out objects, out performing (78%, 82% and
75%) for 1, 10 and 1000 respectively.

C. Real World Evaluation

FurnitureBench Results To evaluate the sim2real capa-
bilities of local policies (Tab. II), we deploy ManipGen
on FurnitureBench [71], comparing against a wide array
of direct-transfer [48], imitation learning [72], [73], offline
RL [74] and human-in-the-loop methods [16], [75], [76] from
Transic [16]. These tasks are single stage; we train local
policies to perform pushing (Stabilize), picking (Reach and
Grasp) and insertion (Insert). We predict a start pose to
initialize the local policy from and deploy the simulation-
trained policies. ManipGen matches or outperforms end-to-
end direct transfer methods (75%, 53.3%), imitation methods
(55%, 82.7%, 65%, 75%, 86.7%) and sim2real methods that
leverage additional correction data [16]. For Insert, local
policies are able to outperform Transic without using any
real world data, achieving 80% while Transic achieves 45%.
These experiments demonstrate ManipGen improves over
end-to-end learning and is capable of handling challenging
initial states, contact-rich interaction and precise motions.
Zero-shot Long-horizon Manipulation To test the gener-
alization capabilities of our method, we propose 5 diverse
long-horizon manipulation tasks (Fig. 1) which involve pick
and place, obstacle avoidance and articulated object manip-
ulation. Cook: put food into a pot on a stove (2 stages),

Cook Replace CabinetStore DrawerStore Tidy Avg

Stages 2 4 4 6 8 4.8

OpenVLA 0% (0.1) 0 (0.0) 0% (0.0) 0 (0.0) 0 (0.0) 0% (.02)
SayCan 80% (1.7) 10% (1.3) 70% (3.5) 20% (3.6) 20% (4.8) 40% (3.0)
LLMTrajGen 70% (1.5) 0% (0.6) 0% (0.6) 0% (1.0) 0% (2.6) 14% (1.3)
VoxPoser 70% (1.4) 0% (0.8) 0% (0.8) 0% (0.9) 10% (4.4) 16% (1.7)
Ours 90% (1.9) 80% (3.7) 90% (3.9) 60% (4.7) 60% (7.2) 76% (4.3)

TABLE III: Zero-shot Long Horizon Manipulation We report
task success rate and average number of stages completed per
real world task. ManipGen outperforms all methods on each task,
achieving 76% with 4.28/4.8 stages completed on average.

Replace: take a pantry item out of the shelf, put it on a
tray and take an object from the tray and put it in the shelf
(4 stages), CabinetStore: open a drawer in the cabinet, put
an object inside and close it (4 stages). DrawerStore: open
a drawer, put two personal care items inside and close the
drawer (6 stages) and Tidy: clean up the table by putting
all the toys into a bin (8 stages). Each task has a unique
object set (5 objects), receptacle (pot, shelf, etc.) and text
description. We run 10 evaluations per task, randomizing
which objects are present and their poses, receptacle poses,
and target poses. All poses are randomized over the table
and we select a diverse set of evaluation objects.

Evaluation Criteria For each task we identify the stages
required for completion. A trial is considered successful if
the final state meets the task’s goal as specified. Additionally,
we track the number of stages completed in each trial. We
conduct 10 trials per task, reporting the success rate and
average number of stages completed.
Comparisons We evaluate SOTA text-conditioned manip-
ulation approaches: SayCan [36], LLMTrajGen [45] and
VoxPoser [41]. For SayCan, we use our VLM and motion
planning system with engineered primitives for interaction;
testing the importance of training local policies. We addition-
ally compare against a pre-trained model for manipulation,
OpenVLA [77]. For each task, we collect 25 demonstrations
on held out objects in held out poses and scene configurations
and fine-tune OpenVLA per task. We pass in a text prompt
specifying the task, recording the task success rate and
number of stages completed.

Across all 5 tasks (Tab. III), we find that ManipGen
outperforms all methods, achieving 76% zero-shot success
rate overall. Note that we have not trained our local policies
on any of these specific objects or in these specific configu-
rations; there is no adaptation in the real world. ManipGen
is able to avoid obstacles while performing manipulation of
unseen objects in arbitrary poses and configurations. Failure
cases for our method resulted from 1) vision failures as open-
set detection models such as Grounding Dino [59] detected
the wrong object, 2) imperfect motion planning, resulting
in collisions with the environment during execution which
dropped objects sometimes and 3) local policies failing
to manipulate from sub-optimal initial poses. In general,
DrawerStore and Tidy are the most challenging tasks due to
their horizon, and consequently all methods, including our
own perform worse (60% for ours, 20% for best baseline).

SayCan is the strongest baseline (40% success), achieving
non-zero success on every task by leveraging the general-

ization capabilities of vision-language foundation models in
a structured manner. However, when initial poses are not
ideal or the task requires contact-rich control, pre-defined
primitives fall apart (10-20% success). LLMTrajGen, while
capable of performing top-down unconstrained pick and
place (Cook: 70%), only makes partial progress on tasks
requiring obstacle avoidance (Replace) or articulated object
manipulation (Store) as its prompts struggle to cover those
cases well. VoxPoser achieves similar performance on top-
down unconstrained pick and place (Cook); however, it
struggles to achieve desired rotation on articulated objects
and in tight spaces (Replace and Store). Moreover, VoxPoser
frequently generates incorrect plans in long-horizon tasks
(Tidy). Finally, OpenVLA failed to solve any task, failing to
generalize to held out objects and poses even though it was
the only method that was given few-shot data. We attempted
to evaluate it on its training objects and it still performs
poorly with strong pose randomization. For additional details
regarding evaluation protocol, experiment conditions and
deployment, please see the Appendix.

V. Discussion and Limitations

We present ManipGen, a method for solving long-horizon
manipulation tasks with unseen objects in unseen configu-
rations by training generalist policies for sim2real transfer.
We propose local policies, a novel policy class for sim2real
transfer that is pose, skill order and scene configuration
invariant, enabling it generalize broadly. For deployment,
we take advantage of the broad generalization capabilities
of foundation models for vision, language and motion plan-
ning to solve long-horizon manipulation tasks from text
prompts. Across 50 real-world long-horizon manipulation
tasks, our method achieves 76% zero-shot success, outper-
forming SOTA planning and imitation methods on every task.

ManipGen also leaves significant room for future work, for
which we briefly describe limitations and outline potential
solutions. First, as a modular framework, ManipGen is
susceptible to cascading errors from any of the modules,
particularly from the high-level planner providing incorrect
plans and the pose-estimation latching onto the wrong object.
Training value functions per module, incorporating closed-
loop re-planning and double checking as well as online-
adaptation of the modules (as they are all learnable) are
all potential techniques that could be applied to diminish
the impact of cascading errors. Next, due to the dependence
on depth sensing, for pose-estimation, motion planning and
local policy execution, ManipGen performs struggles with
shiny, reflective and transparent objects. To that end, meth-
ods that learn depth from RGB [78], [79] could directly
resolve this limitation. Finally, as interaction is learned in
simulation, ManipGen is limited to learning behaviors that
can be accurately simulated, limiting its direct applicability
to tasks with state-changes and complex contacts. We note
that the local policy framework described in this work, while
uniquely suited for sim2real transfer, is amenable to training
on real-world data as well.

Acknowledgement

We thank Russell Mendonca, Ananye Agarwal and Yash
Narang for their insightful discussions and feedback. We
additionally thank Russell Mendonca, Shikhar Bahl, Lili
Chen, and Unnat Jain for feedback on early drafts of this
paper. This work was supported in part by the NSF Graduate
Fellowship, Apple, and ONR grant N00014-23-1-2368.

References

[1] R. OpenAI, “Gpt-4 technical report,” arXiv, pp. 2303–08 774, 2023.
1, 2

[2] O.-X. E. Collaboration, A. Padalkar, A. Pooley, A. Jain, A. Bewley,
A. Herzog, A. Irpan, A. Khazatsky, A. Rai, A. Singh, et al., “Open
x-embodiment: Robotic learning datasets and rt-x models,” arXiv
preprint arXiv:2310.08864, 2023. 1

[3] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karam-
cheti, S. Nasiriany, M. K. Srirama, L. Y. Chen, K. Ellis, P. D.
Fagan, J. Hejna, M. Itkina, M. Lepert, Y. J. Ma, P. T. Miller, J. Wu,
S. Belkhale, S. Dass, H. Ha, A. Jain, A. Lee, Y. Lee, M. Memmel,
S. Park, I. Radosavovic, K. Wang, A. Zhan, K. Black, C. Chi, K. B.
Hatch, S. Lin, J. Lu, J. Mercat, A. Rehman, P. R. Sanketi, A. Sharma,
C. Simpson, Q. Vuong, H. R. Walke, B. Wulfe, T. Xiao, J. H. Yang,
A. Yavary, T. Z. Zhao, C. Agia, R. Baijal, M. G. Castro, D. Chen,
Q. Chen, T. Chung, J. Drake, E. P. Foster, J. Gao, D. A. Herrera,
M. Heo, K. Hsu, J. Hu, D. Jackson, C. Le, Y. Li, K. Lin, R. Lin, Z. Ma,
A. Maddukuri, S. Mirchandani, D. Morton, T. Nguyen, A. O’Neill,
R. Scalise, D. Seale, V. Son, S. Tian, E. Tran, A. E. Wang, Y. Wu,
A. Xie, J. Yang, P. Yin, Y. Zhang, O. Bastani, G. Berseth, J. Bohg,
K. Goldberg, A. Gupta, A. Gupta, D. Jayaraman, J. J. Lim, J. Malik,
R. Martı́n-Martı́n, S. Ramamoorthy, D. Sadigh, S. Song, J. Wu, M. C.
Yip, Y. Zhu, T. Kollar, S. Levine, and C. Finn, “Droid: A large-scale
in-the-wild robot manipulation dataset,” 2024. 1

[4] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis,
K. Daniilidis, C. Finn, and S. Levine, “Bridge data: Boosting gener-
alization of robotic skills with cross-domain datasets,” arXiv preprint
arXiv:2109.13396, 2021. 1

[5] H. Walke, K. Black, A. Lee, M. J. Kim, M. Du, C. Zheng, T. Zhao,
P. Hansen-Estruch, Q. Vuong, A. He, V. Myers, K. Fang, C. Finn, and
S. Levine, “Bridgedata v2: A dataset for robot learning at scale,” in
Conference on Robot Learning (CoRL), 2023. 1

[6] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning fine-grained
bimanual manipulation with low-cost hardware,” arXiv preprint
arXiv:2304.13705, 2023. 1, 5

[7] Z. Fu, T. Z. Zhao, and C. Finn, “Mobile aloha: Learning bimanual
mobile manipulation with low-cost whole-body teleoperation,” arXiv
preprint arXiv: Arxiv-2401.02117, 2024. 1

[8] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
robotics, vol. 5, no. 47, p. eabc5986, 2020. 1, 2

[9] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor
adaptation for legged robots,” arXiv preprint arXiv:2107.04034, 2021.
1, 2

[10] A. Agarwal, A. Kumar, J. Malik, and D. Pathak, “Legged locomotion
in challenging terrains using egocentric vision,” in Conference on
Robot Learning. PMLR, 2023, pp. 403–415. 1, 2, 4

[11] Z. Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and
H. Zhao, “Robot parkour learning,” arXiv preprint arXiv:2309.05665,
2023. 1, 2, 3, 4

[12] X. Cheng, K. Shi, A. Agarwal, and D. Pathak, “Extreme parkour with
legged robots,” arXiv preprint arXiv:2309.14341, 2023. 1, 2, 3, 4

[13] D. Hoeller, N. Rudin, D. Sako, and M. Hutter, “Anymal parkour:
Learning agile navigation for quadrupedal robots,” Science Robotics,
vol. 9, no. 88, p. eadi7566, 2024. 1

[14] B. Tang, M. A. Lin, I. Akinola, A. Handa, G. S. Sukhatme, F. Ramos,
D. Fox, and Y. S. Narang, “Industreal: Transferring contact-rich
assembly tasks from simulation to reality,” in Robotics: Science and
Systems XIX, Daegu, Republic of Korea, July 10-14, 2023, K. E.
Bekris, K. Hauser, S. L. Herbert, and J. Yu, Eds., 2023. [Online].
Available: https://doi.org/10.15607/RSS.2023.XIX.039 1, 2, 4, 5

[15] B. Tang, I. Akinola, J. Xu, B. Wen, A. Handa, K. Van Wyk, D. Fox,
G. S. Sukhatme, F. Ramos, and Y. Narang, “Automate: Specialist and
generalist assembly policies over diverse geometries,” arXiv preprint
arXiv:2407.08028, 2024. 1, 2

[16] Y. Jiang, C. Wang, R. Zhang, J. Wu, and L. Fei-Fei, “Transic: Sim-to-
real policy transfer by learning from online correction,” arXiv preprint
arXiv: Arxiv-2405.10315, 2024. 1, 2, 3, 5, 6, 14

[17] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew,
A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas, et al., “Solving
rubik’s cube with a robot hand,” arXiv preprint arXiv:1910.07113,
2019. 1, 2

[18] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu,
D. Makoviichuk, K. Van Wyk, A. Zhurkevich, B. Sundaralingam,

et al., “Dextreme: Transfer of agile in-hand manipulation from simu-
lation to reality,” arXiv preprint arXiv:2210.13702, 2022. 1, 2

[19] T. G. W. Lum, M. Matak, V. Makoviychuk, A. Handa, A. Allshire,
T. Hermans, N. D. Ratliff, and K. Van Wyk, “Dextrah-g: Pixels-to-
action dexterous arm-hand grasping with geometric fabrics,” arXiv
preprint arXiv:2407.02274, 2024. 1, 2, 3, 4

[20] T. Chen, M. Tippur, S. Wu, V. Kumar, E. Adelson, and P. Agrawal,
“Visual dexterity: In-hand dexterous manipulation from depth,” arXiv
preprint arXiv:2211.11744, 2022. 1

[21] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ international conference on
intelligent robots and systems. IEEE, 2012, pp. 5026–5033. 1

[22] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. Mc-
Grew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, et al.,
“Learning dexterous in-hand manipulation,” The International Journal
of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020. 2

[23] Y. S. Narang, K. Storey, I. Akinola, M. Macklin, P. Reist,
L. Wawrzyniak, Y. Guo, Á. Moravánszky, G. State, M. Lu, A. Handa,
and D. Fox, “Factory: Fast contact for robotic assembly,” in Robotics:
Science and Systems XVIII, New York City, NY, USA, June 27 - July
1, 2022, K. Hauser, D. A. Shell, and S. Huang, Eds., 2022. [Online].
Available: https://doi.org/10.15607/RSS.2022.XVIII.035 2

[24] T. Ren, S. Liu, A. Zeng, J. Lin, K. Li, H. Cao, J. Chen, X. Huang,
Y. Chen, F. Yan, Z. Zeng, H. Zhang, F. Li, J. Yang, H. Li, Q. Jiang,
and L. Zhang, “Grounded sam: Assembling open-world models for
diverse visual tasks,” 2024. 2, 5

[25] M. Dalal, J. Yang, R. Mendonca, Y. Khaky, R. Salakhutdinov, and
D. Pathak, “Neural mp: A generalist neural motion planner,” arXiv
preprint arXiv:2409.05864, 2024. 2, 5, 14

[26] A. I. Center, “Shakey the robot,” 1984. 2
[27] R. P. Paul, Robot manipulators: mathematics, programming, and

control: the computer control of robot manipulators. Richard Paul,
1981. 2

[28] D. E. Whitney, “The mathematics of coordinated control of prosthetic
arms and manipulators,” 1972. 2

[29] M. Vukobratović and V. Potkonjak, Dynamics of manipulation robots:
theory and application. Springer, 1982. 2

[30] D. Kappler, F. Meier, J. Issac, J. Mainprice, C. G. Cifuentes,
M. Wüthrich, V. Berenz, S. Schaal, N. Ratliff, and J. Bohg, “Real-
time perception meets reactive motion generation,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1864–1871, 2018. 2

[31] R. R. Murphy, Introduction to AI robotics. MIT press, 2019. 2
[32] C. R. Garrett, C. Paxton, T. Lozano-Pérez, L. P. Kaelbling, and D. Fox,

“Online replanning in belief space for partially observable task and
motion problems,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2020, pp. 5678–5684. 2

[33] M. T. Mason, Mechanics of robotic manipulation. MIT press, 2001.
2

[34] D. E. Whitney, Mechanical assemblies: their design, manufacture, and
role in product development. Oxford university press New York, 2004,
vol. 1. 2

[35] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion
planning in belief space,” The International Journal of Robotics
Research, vol. 32, no. 9-10, pp. 1194–1227, 2013. 2

[36] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, K. Gopalakrishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu,
J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey,
S. Jesmonth, N. J. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-
H. Lee, S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao,
K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet, N. Sievers, C. Tan,
A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, and M. Yan,
“Do as i can, not as i say: Grounding language in robotic affordances,”
arXiv preprint arXiv: Arxiv-2204.01691, 2022. 2, 3, 5, 6

[37] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng,
J. Tompson, I. Mordatch, Y. Chebotar, et al., “Inner monologue:
Embodied reasoning through planning with language models,” arXiv
preprint arXiv:2207.05608, 2022. 2, 3

[38] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents,” in International Conference on Machine Learning. PMLR,
2022, pp. 9118–9147. 2, 3

[39] J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song,
J. Bohg, S. Rusinkiewicz, and T. Funkhouser, “Tidybot: Personal-
ized robot assistance with large language models,” arXiv preprint
arXiv:2305.05658, 2023. 2, 3

https://doi.org/10.15607/RSS.2023.XIX.039
https://doi.org/10.15607/RSS.2022.XVIII.035

[40] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg, “Text2motion:
From natural language instructions to feasible plans,” arXiv preprint
arXiv:2303.12153, 2023. 2

[41] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei, “Voxposer:
Composable 3d value maps for robotic manipulation with language
models,” arXiv preprint arXiv:2307.05973, 2023. 2, 6

[42] J. Zhang, J. Zhang, K. Pertsch, Z. Liu, X. Ren, M. Chang, S.-H. Sun,
and J. J. Lim, “Bootstrap your own skills: Learning to solve new tasks
with large language model guidance,” Conference on Robot Learning,
2023. 2

[43] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P. Stone,
“Llm+ p: Empowering large language models with optimal planning
proficiency,” arXiv preprint arXiv:2304.11477, 2023. 2

[44] M. Dalal, T. Chiruvolu, D. Chaplot, and R. Salakhutdinov, “Plan-seq-
learn: Language model guided rl for solving long horizon robotics
tasks,” in International Conference on Learning Representations
(ICLR), 2024. 2, 5, 14

[45] T. Kwon, N. Di Palo, and E. Johns, “Language models as zero-shot
trajectory generators,” IEEE Robotics and Automation Letters, 2024.
2, 6

[46] H. Huang, F. Lin, Y. Hu, S. Wang, and Y. Gao, “Copa: General robotic
manipulation through spatial constraints of parts with foundation
models,” arXiv preprint arXiv:2403.08248, 2024. 2

[47] A. Agarwal, S. Uppal, K. Shaw, and D. Pathak, “Dexterous functional
grasping,” in 7th Annual Conference on Robot Learning, 2023. 2, 3,
4

[48] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” arXiv
preprint arXiv: Arxiv-1710.06537, 2017. 2, 6

[49] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and
semi-mdps: A framework for temporal abstraction in reinforcement
learning,” Artificial Intelligence, vol. 112, no. 1, pp. 181–211, 1999.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0004370299000521 3

[50] S. Uppal, A. Agarwal, H. Xiong, K. Shaw, and D. Pathak, “Spin:
Simultaneous perception interaction and navigation,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2024, pp. 18 133–18 142. 3, 4

[51] Y. Xu, W. Wan, J. Zhang, H. Liu, Z. Shan, H. Shen, R. Wang, H. Geng,
Y. Weng, J. Chen, et al., “Unidexgrasp: Universal robotic dexterous
grasping via learning diverse proposal generation and goal-conditioned
policy,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 4737–4746. 4, 11

[52] K. Mo, S. Zhu, A. X. Chang, L. Yi, S. Tripathi, L. J. Guibas, and H. Su,
“Partnet: A large-scale benchmark for fine-grained and hierarchical
part-level 3d object understanding,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 909–
918. 4, 11

[53] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox, “Contact-
graspnet: Efficient 6-dof grasp generation in cluttered scenes,” in 2021
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021, pp. 13 438–13 444. 4, 11

[54] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings, 2011, pp.
627–635. 4

[55] K. Hsu, M. J. Kim, R. Rafailov, J. Wu, and C. Finn, “Vision-
based manipulators need to also see from their hands,” arXiv preprint
arXiv:2203.12677, 2022. 4

[56] M. Dalal, A. Mandlekar, C. Garrett, A. Handa, R. Salakhutdinov,
and D. Fox, “Imitating task and motion planning with visuomotor
transformers,” 2023. 4

[57] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni,
L. Fei-Fei, S. Savarese, Y. Zhu, and R. Martı́n-Martı́n, “What matters
in learning from offline human demonstrations for robot manipulation,”
in arXiv preprint arXiv:2108.03298, 2021. 4, 5

[58] J. T. Barron and J. Malik, “Intrinsic scene properties from a single
rgb-d image,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2013, pp. 17–24. 4

[59] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li,
J. Yang, H. Su, J. Zhu, et al., “Grounding dino: Marrying dino with
grounded pre-training for open-set object detection,” arXiv preprint
arXiv:2303.05499, 2023. 5, 6

[60] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint arXiv:
Arxiv-1707.06347, 2017. 5, 12

[61] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State,
“Isaac gym: High performance gpu-based physics simulation for robot
learning,” arXiv preprint arXiv: Arxiv-2108.10470, 2021. 5

[62] T. He, Z. Luo, W. Xiao, C. Zhang, K. Kitani, C. Liu, and G. Shi,
“Learning human-to-humanoid real-time whole-body teleoperation,”
arXiv preprint arXiv: Arxiv-2403.04436, 2024. 5

[63] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel,
“Deep spatial autoencoders for visuomotor learning,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2016, pp. 512–519. 5

[64] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation MIT-Press, 1997. 5

[65] A. Vaswani, “Attention is all you need,” Advances in Neural Informa-
tion Processing Systems, 2017. 5

[66] C. Chi, Z. Xu, C. Pan, E. Cousineau, B. Burchfiel, S. Feng, R. Tedrake,
and S. Song, “Universal manipulation interface: In-the-wild robot
teaching without in-the-wild robots,” arXiv preprint arXiv:2402.10329,
2024. 5, 14

[67] Y. Zhu, J. Wong, A. Mandlekar, R. Martı́n-Martı́n, A. Joshi, S. Nasiri-
any, and Y. Zhu, “robosuite: A modular simulation framework
and benchmark for robot learning,” arXiv preprint arXiv: Arxiv-
2009.12293, 2020. 5

[68] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto, “Mastering visual
continuous control: Improved data-augmented reinforcement learning,”
arXiv preprint arXiv:2107.09645, 2021. 5

[69] M. Dalal, D. Pathak, and R. R. Salakhutdinov, “Accelerating robotic
reinforcement learning via parameterized action primitives,” Advances
in Neural Information Processing Systems, vol. 34, pp. 21 847–21 859,
2021. 5

[70] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Pddlstream:
Integrating symbolic planners and blackbox samplers via optimistic
adaptive planning,” in Proceedings of the International Conference on
Automated Planning and Scheduling, vol. 30, 2020, pp. 440–448. 5

[71] M. Heo, Y. Lee, D. Lee, and J. J. Lim, “Furniturebench: Reproducible
real-world benchmark for long-horizon complex manipulation,” in
Robotics: Science and Systems XIX, Daegu, Republic of Korea, July
10-14, 2023, K. E. Bekris, K. Hauser, S. L. Herbert, and J. Yu, Eds.,
2023. [Online]. Available: https://doi.org/10.15607/RSS.2023.XIX.041
6, 14

[72] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a
neural network,” in Advances in Neural Information Processing
Systems, D. Touretzky, Ed., vol. 1. Morgan-Kaufmann, 1988.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf 6

[73] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni,
L. Fei-Fei, S. Savarese, Y. Zhu, and R. Martı́n-Martı́n, “What matters
in learning from offline human demonstrations for robot manipulation,”
arXiv preprint arXiv: Arxiv-2108.03298, 2021. 6

[74] I. Kostrikov, A. Nair, and S. Levine, “Offline reinforcement learning
with implicit q-learning,” arXiv preprint arXiv: Arxiv-2110.06169,
2021. 6

[75] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer,
“Hg-dagger: Interactive imitation learning with human experts,” arXiv
preprint arXiv: Arxiv-1810.02890, 2018. 6

[76] A. Mandlekar, D. Xu, R. Martı́n-Martı́n, Y. Zhu, L. Fei-Fei, and
S. Savarese, “Human-in-the-loop imitation learning using remote tele-
operation,” arXiv preprint arXiv: Arxiv-2012.06733, 2020. 6

[77] M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna,
S. Nair, R. Rafailov, E. Foster, G. Lam, P. Sanketi, et al., “Open-
vla: An open-source vision-language-action model,” arXiv preprint
arXiv:2406.09246, 2024. 6

[78] L. Yang, B. Kang, Z. Huang, X. Xu, J. Feng, and H. Zhao, “Depth
anything: Unleashing the power of large-scale unlabeled data,” in
CVPR, 2024. 7

[79] A. Bochkovskii, A. Delaunoy, H. Germain, M. Santos, Y. Zhou,
S. R. Richter, and V. Koltun, “Depth pro: Sharp monocular metric
depth in less than a second,” arXiv, 2024. [Online]. Available:
https://arxiv.org/abs/2410.02073 7

[80] A. Allshire, M. MittaI, V. Lodaya, V. Makoviychuk, D. Makoviichuk,
F. Widmaier, M. Wüthrich, S. Bauer, A. Handa, and A. Garg,
“Transferring dexterous manipulation from gpu simulation to a remote

https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://doi.org/10.15607/RSS.2023.XIX.041
https://proceedings.neurips.cc/paper_files/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://arxiv.org/abs/2410.02073

real-world trifinger,” in 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 11 802–
11 809. 11

Appendix

VI. RL Training Details

In this section, we provide a detailed description of the
data generation process, the exact reward definitions and the
specific hyper-parameters we use to train our skills.

A. Data Generation

For training generalist pick and place skills, we require a
large dataset of common objects that can simulate well with
contact. As a result, we train policies using the UnidexGrasp
dataset [51] which contains 3.5K objects of 133 categories
such as bowls, cups, bottles, cameras, remotes, etc. Since
our policies are local, we can simply generate scenes with
a single object spawned on a table top. However, such an
agent may not generalize well to manipulation in tight spaces
and among clutter, when it needs to perform local obstacle
avoidance and constrained manipulation. For robustness, we
train with randomly sampled clutter objects (UnidexGrasp)
and obstacles (cuboids) that we spawn in the scene.

For picking, to define an initial state distributions which
ensures locality (within ϵ of the target object), we sample
poses in a half-sphere above the table with radius ϵ = 0.08
and an additional error tolerance of 0.05 around the target
object that are always pointing towards the object (ensuring
the object is visible from the wrist camera). For placing, we
execute the pick policy and then sample initial poses in a
cuboid of with side length ϵ = 0.2 around the picking pose.
In both cases we ensure that the sampled poses are not in
contact with anything in the environment (aside from the
in-hand object if present).

For local articulated object manipulation of objects such
as doors and drawers, the design and global structure of
the asset is not important. In fact, the only component of
interest to the local policy is the handle. Accordingly, we
sample from a dataset of 2.6K door and drawer handles
from the PartNet dataset [52] and build door and drawer
assets out of cuboids (Fig. 2) as they are straightforward to
randomize. We define drawers as boxes to be pulled straight
out and doors as boxes to be opened using a vertical hinge
joint. We randomize the size, shape, position, orientation,
articulated joint range, friction and damping coefficients of
the articulated objects, which covers a wide set of real world
articulated objects. Detailed randomization distributions are
presented in Tab. IV. For the grasp handle skill, we sample
initial poses pointing toward the handle in a half sphere
(in this case vertical half-sphere, away from the door) with
radius ϵ = 0.08 and an additional error tolerance of 0.05. For
opening and closing, after sampling a random initial pose of
the articulated joint, we execute the grasp handle policy and
add a small noise to ensure diversity of the final end-effector
pose.

Finally, we collect valid pre-grasp and rest poses in
simulation to help train our local policies. Specifically, we
randomly sample grasp poses on the object mesh using
antipodal sampling [53] (1K per rest pose for UniDexGrasp
objects and 2.5K for PartNet objects). We then move the

Franka arm to pick/grasp the handle of the object using the
pre-sampled grasp poses and save the successful poses. We
also utilize the success rate of this scheme to filter out rest
object poses that are not graspable (e.g., an upside down
bowl). We also generate a wide set of object rest poses for
training the placing policy using the initial poses from the
UnidexGrasp dataset, and augmenting them by rotating about
the z-axis with 8 different angles and testing to ensure the
objects remain at rest.

Parameter Range / Distribution

UniDexGrasp objects
Object size [0.06,0.30]

Initial object position (XY) U(0.3,0.7)×U(−0.2,0.2)
Initial object rotation (Z-axis) U(−π,π)

Articulated objects
Door size U(0.25,0.40)×U(0.20,0.50)

Door damping U(0.01,0.02)
Door friction U(0.025,0.050)

Door joint range [0,π/2]
Drawer size U(0.25,0.50)×U(0.08,0.25)

Drawer damping U(0.10,0.20)
Drawer friction U(0.25,0.50)

Drawer joint range [0,0.3]
Distance to robot base U(0.65,0.75)

Object Orientation U(−π/2,π/2)

TABLE IV: Randomization for data generation.

B. Rewards
We provide additional details on how to specify rewards

for each skill. Specifically, we define ree,rob j,ree,ob j and
raction.
Pick involves moving the gripper so the object can be easily
grasped. Instead of encouraging the agent to move towards
the overall object pose, which is not necessarily the pose to
achieve for grasping, we provide dense signal for learning to
grasp using pre-sampled grasp poses ({Xtarg}). We encourage
the agent to minimize the key-point distance [80] to the
nearest grasp pose:

ree,grasp =

N∑
i=1

emin{Xtarg} ||X
i
ee−Xi

targ ||
2

Another challenge is that of picking in tight spaces, in
which the policy changing directions and too frequently
may cause damage and failure to complete the task. Thus,
we encourage the agent to minimize its change in gripper
orientation while interacting, by adding a penalty term on the
angle between the current and previous gripper pose along
the gripper’s central axis (3),

ree,init = −arccos
(
(Rt

ee3)(R
t−1
ee 3)
)

We also add a term to minimize the contact force on the
gripper which discourages contact with any part of the scene.

ree,ob j =max(max(fle f t, fright),0)

Finally, when picking, the agent should try to minimize
moving the target object: we set

rob j = e||X
t
ob j,xy−X0

ob j,xy ||
2

to penalize changes in object pose. All other reward compo-
nents have a constant set to 0.
Place requires the agent to carefully set the object down
near the initial pose. To provide dense signal for placing and
ensure stability, we use a key-point distance reward on the
object pose to encourage it to reach a stable absolute rest
pose (rob j)

rob j = e
∑8

i=1 ||X
i
ob j,FPS −Xi

rest,FPS ||
2

and a key-point distance reward to the nearest grasp pose to
encourage the agent to maintain a stable pose relative to the
object itself while moving (ree). This reward is the same as
in pick.
Grasp Handle enables the agent to be able to grasp the
handle of any door or drawer, a necessary skill to interact
with articulated objects. This skill uses similar rewards to
pick, but adapted for articulation: 1) key-point-based rewards
for reaching pre-grasp poses (ree) 2) restricting the gripper
orientation in task irrelevant directions (ree,z) 3) restricting
the gripper orientation relative to the handle in the x-axis
(ree,ob j) 4) discouraging the agent from moving the object
by minimizing the motion of the joint (rob j).

Same as in pick, we wish to use pre-grasp poses in order
to provide dense signal to the agent and ensure that it does
not change orientation too much. We use the same key-
point-based reward ree,grasp, but instead restrict the policy’s
movement in the z-direction, an axis along which motion is
not beneficial to solving the task

ree,z = −|Xt
ee,z−X0

ee,z|

We further encourage the agent to only move in task relevant
directions, by encouraging the agent to minimize the angle
between the gripper and handle, in the x-axis of the door
frame:

ree,ob j = emin((Rt
handleRt

ee3)x+thresh,0)

Similar to pick, we discourage the agent from moving the
object, in this case by minimizing the motion of the joint

rob j = −|qt −q0|

Open and Close involve opening and closing articulated
objects, having already grasped the handle. We can solve the
task with a dense absolute difference reward (rob j) between
the current and target joint angles (0 for close, and qlimit,
the joint limit of the object for open). To ensure the agent
maintains its grasp while smoothly moving the articulated
to joint to the desired configuration, we use ree,z from Grasp
handle, penalize movement relative to the door/drawer handle
(ree,ob j), and discourage (raction) taking actions that cause the
handle to slip out (moving in the y or z axes).

These skills utilize a dense reward for solving the task

rob j = |qt −qtarg|

where qtarg is 0 for close and is qlimit the joint limit of the
object for open. As with grasp handle, we restrict the policy’s
movement along the z-axis using ree,z. We additionally

penalize any movement of the end-effector in the handle
frame,

ree,ob j = ||Rt
handleXt

ee−Rt−1
handleXt−1

ee ||

and any sampled actions that cause the agent to move in the
y or z axes:

raction = −||(Rt
handle(a))yz||

2

These rewards ensure that the agent maintains its grasp
while smoothly moving the articulated to joint to the desired
configuration.

We train all RL policies with PPO [60]. Detailed hyper-
parameters are presented in Tab. V and Tab. VI.

Hyperparameter Value
Num. envs (Isaac Gym, state-based) 8192
Num. rollout steps per policy update 32

Num. learning epochs 5
Episode length 120
Discount factor 0.99
GAE parameter 0.95
Entropy coeff. 0.0
PPO clip range 0.2
Learning rate 0.0005

KL threshould for adaptive schedule 0.16
Value loss coeff. 4.0

Max gradient norm 1.0

TABLE V: Hyper-parameters for PPO.

Skill #Max epoch #Save best #Early stop
Pick 500 100 200
Place 500 100 200

Grasp Handle 500 100 100
Open 500 100 100
Close 500 100 100

TABLE VI: Training epochs and early stop criterion for each
task. #Max epoch is the maximum number of iterations to
run. #Save best is the first iteration to begin saving best
checkpoints. # Early stop suggests terminating early if there
is no improvement after certain number of iterations.

VII. Distillation Training Details

A. Multitask DAgger

In our multitask DAgger implementation, we incorporate
a replay buffer of size K that holds the last K×B trajectories
in memory. The training process alternates between updating
the policy for a single epoch on this buffer and collecting a
batched set of trajectories (size B) from the environment for
the current object. In practice, we find that K=100, B=32
performs well, which means for a single object we collect
32 simultaneous trajectories at a time, and we can hold
data for up to 100 objects in our buffer which is constantly
refreshed as we collect new data. A practical issue is loading
all objects from the dataset into simulation simultaneously is
unfeasible. To address this, we split the dataset into batches
of 100 objects and sequentially launch training on each batch

for 100 epochs. Detailed multitask DAgger parameters are
presented in Tab. VII.

Hyperparameter Value
Num. envs (Isaac Gym, vision) 128

Episode length 120
Num. rollout steps per policy epoch 120

Num. learning epochs 1
Buffer size 100 * 128

Learning rate 0.0001
Batch size 2048

TABLE VII: Hyper-parameters for Multitask DAgger.

B. Data Augmentation

In addition to random camera cropping, we also apply
edge noise and random holes to enhance robustness to real
world observations.

Edge artifacts To model the noisiness along object edges,
we use the correlated depth noise via bi-linear interpolation
of shifted depth. Given a depth map of size H ×W, we
construct a grid {0, · · · ,H−1}× {0, · · · ,W −1}. For each node
on the grid, we apply a random shift N(0,0.5) with prob-
ability 0.8. We then perform bilinear interpolation between
the original depth values and the adjusted grid to generate a
new depth map.

Random holes We observe that, even after hole filling, the
real world depth maps still contain irregular holes (especially
for reflective surfaces and dim environments). To model these
holes, we create a random pixel-level mask from U(0,1).
This mask is smoothed with Gaussian blur and normalized
to the range [0,1]. Based on the mask, we zero out pixels
with mask values exceeding a threshold randomly sampled
from U(0.6,0.9). The randomization is applied to a depth
map with probability 0.5.

We summarize hyper-parameters for DAgger data augmen-
tation in Tab. VIII and visualize them in Fig. 4. Note that the
resolution of our depth map is 84×84. The visual effect with
these hyper-parameters will change on different resolutions.

Hyper-parameter Value
Edge Noise

Gaussian Noise Std 0.5
Noise Accept Prob 0.8

Random Holes
Gaussian Blur Kernel Size [3, 27]

Gaussian Blur Std [1, 7]
Mask Threshold [0.7, 0.9]
Hole Keep Prob 0.5

TABLE VIII: Hyper-parameters for DAgger data augmenta-
tion.

VIII. Deployment Details

In this section, we describe our real-world deployment sys-
tem in detail. We begin by providing a high-level overview
of ManipGen deployment in pseudocode below:

Tagging One challenge with Grounded SAM is prompt-
ing: the Grounding Dino module is quite sensitive to the

Fig. 4: Depth Augmentation Visualization of edge artifacts
and random holes on depth maps.

input prompt and does not always detect the correct object
unless the prompt is formatted well (descriptive, includes
colors and texture and shape). Since the VLM will be used to
prompt SAM with the target object for each skill, we need the
VLM to output tags for objects such that Grounded SAM will
trigger on the correct object. As a result, we include an initial
tagging phase, in which we have the VLM list all objects that
are present in the scene, which we then pass into Grounded
SAM to get a list of tags and associated segmentation masks
based on how Grounded SAM interprets the scene. We then
pass the tagged image, as well as the original image back
into the VLM for planning

Planning For the VLM to output a plan (of the same
format as in PSL), we provide a system prompt to the VLM
that provides it a detailed description of the skill library,
their effects on the environment and when they can be used.
We also provide it a list of hints as to what consistitutes
reasonable plans, this is necessary as existing VLMs still
lack strong spatial reasoning capabilities inherently, though
prompting seems to alleviate this issue to a certain degree.
We include several in-context examples that allow the model
to understand the output format, prompt the model to justify
its decisions (which helped produce better plans) and format
the output as a JSON string (which resolved most of the
parsing/formatting issues).

After planning, ManipGen loops through the plan, estimat-
ing the pose of the object/region of interest, motion planning
there, and then executing the appropriate local policy.

Pose Estimation We begin by using Grounded-SAM to
segment the object of interest, averaging the 3D points of
the segmented pixels to determine its position. Orientation
is then estimated depending on specific cases. Based on
whether there is obstacle above the object, we leverage VLM
to classify pick and place tasks into two scenarios: open-
space (e.g., table surfaces) and tight-space (e.g., microwaves).
We let the robot gripper point downwards in open-space
setting. For open-space picking, we project the object’s
points onto the XY plane and apply damped least square
to fit the points, estimating the object’s longest axis to get
gripper’s rotation along Z-axis. For open-space placing, we
simplify the problem by selecting a fixed orientation pointing
down. In tight-space pick and place, we first sample a set of
robot poses around the object. We then capture point cloud
of the current scene (excluding the robot) and evaluate the
number of points in collision with each sampled pose. To
bias towards poses that are further from obstacles, we apply
Gaussian noise N(0.0,0.1) to the points, and select the pose
with minimal collision. For articulated objects, we estimate
position of the handle and whether it is vertical or horizontal.
Then we sample a set of target poses around the handle
and use the same collision-checking method as in tight-space
scenario to identify the target pose.

Motion Planning We use the released Neural MP code
and checkpoint to perform motion planning given the target
pose and current point-cloud. We perform open-loop motion
planning with test-time optimization batch size of 64 (the
paper used 100) and max path length of 100. Neural MP
can produce paths that are jerky and non-smooth at times.
As a result, we perform EMA smoothing with α = 0.9 to
reduce the jerkiness of the trajectories.

Local Policies Once initialized near the object of inter-
est, we segment the target object in the first frame using
Grounded SAM). We store this mask along with the depth
map of the first frame and then we deploy the local policy.
At each step, we pass in the segmentation mask of the target
object, the first frame depth map, the current frame depth
map and the proprioception to the policy. We run the Task
Space Impedance Controller on the robot at 60Hz for a fixed,
skill specific duration (max 8s). Then, depending on the skill,

we either open or close the gripper and begin executing the
next stage.

IX. Experiment Details

Hardware For all of our experiments, we use a Franka
Emika Panda Robot, which is a 7 degree of freedom ma-
nipulator arm. We control the robot using the Industre-
allib library (https://github.com/NVlabs/industreallib) using
the Task Space Impedance Controller. For deployment, we
use Leaky PLAI with action scales, thresholds and skill
deployment durations chosen per skill (Table IX). For all
skills, we used a position gain of 1000 and rotation gain of
50.

Pick Place Grasp Handle Open Close
Duration 5s 4s 6s 8s 4.5s

Action Scale Pos .002 .002 .002 .003 .005
Action Scale Rot .05 .05 .004 .0005 .0005

Leaky PLAI Thresh X, Y .02 .02 .02 0.02 0.03
Leaky PLAI Thresh Z .02 .02 .02 .003 .003

Leaky PLAI Thresh Rot (Deg) 4 4 2 .005 .005

TABLE IX: Configurations for skill deployment.

The robot is mounted to a fixed base pedestal behind a
desk of size .762m by 1.22m with variable height. For global
views (used for the VLM, pose estimation and Neural MP),
we use four calibrated depth cameras, Intel Realsense 455,
placed around the scene in order to accurately capture the
environment. We project the depth maps from each camera
into 3D and combine the individual point-clouds into a single
scene representation for Neural MP and pose estimation.
For input to Neural MP, we further process the point-clouds
according to the paper [25]. While the VLM and the pose
estimators can take in multiple views in principle, in practice
we found that their results (predicted plans, pose estimations)
were significantly less reliable and consistent when using
more than a single camera. As a result, for each task, we
select one out of the four global view cameras to use for
plan prediction and pose estimation. Finally, for local views,
we use the d405 camera mounted on the wrist, and pass its
depth maps (after clamping and normalization) as input to
the policy.

A. Simulated Comparison (Robosuite) Details

We zero-shot transfer our local policies (trained in Isaac-
Gym) to the robosuite tasks. Note, we do not train on the
Robosuite objects at all, we use our data generation and
training pipeline to train local policies in IsaacGym and
transfer the policies to Robosuite. To deploy our method,
we modify the environment to use the UMI [66] gripper
and Task Space Impedance Control. We use the same LLM-
planning and motion planning infrastructure as used in the
PSL [44] paper and evaluate our policies using 100 trials per
task. All other numbers for baselines are taken from the PSL
paper.

B. Furniture Bench Experiment Details

We replicate the exact task setup from the Transic [16]
paper: 3D printed objects from FurnitureBench [71] in the

https://github.com/NVlabs/industreallib

exact poses specified in their paper. In this experiment, we
train local policies for these specific tasks and then deploy
them. As a result, this experiment compares our method of
sim2real transfer (local policies) with end-to-end sim2real
transfer (w/ and w/o data aug) as well as Transic (which
uses real-world data).

C. Real World Long-horizon Manipulation Details

For each of the following tasks, we specify the large object
(if present) in each task (as a receptacle) as well as the list
of objects we randomize, the task description in detail, and
the task prompt provided to ManipGen and the baselines.
Unless otherwise stated, all objects (handles for articulated
objects) to interact with are positioned within 0.8 meters of
the robot base to ensure they are within the gripper’s reach.
Some example scene arrangements are presented in Fig. 5.

1) Cook (2 stages): Pick up a food item on the cutting
board and put it in a pot on the stove.

Task prompt: Put [OBJ] in the black pot.
Large object: black pot (39cm × 32cm × 14cm)
Randomized objects: carrot (17.0cm × 2.5cm × 2.5cm),

cassava (20.0cm × 6.1cm × 6.0cm), corn (17.7cm × 4.2cm
× 4.3cm), spice box (12.8cm × 9.0cm × 3.0cm), soup can
(10.0cm × 6.7cm × 6.7cm)

Randomization: We put the food item on a cutting board,
the pot on a stove, and randomize their poses across the table
within the gripper’s reach.

2) Replace (4 stages): Fetch a pantry item from the shelf,
put it on a wooden board on the table and take an object from
the table, put it on a white plate.

Task prompt: Place [OBJ A] on the wooden board, and
put [OBJ B] on the white plate in the shelf.

Large objects: wooden board (51cm × 18.8cm × 1.2cm),
shelf (80cm × 60cm × 23cm)

Randomized objects: [OBJ A] brown coffee package
(15.7cm × 8.0cm × 6.0cm), blue coffee package (15.7cm ×
8.0cm × 6.0cm), ketchup bottle (17.5cm × 9.3cm × 5.5cm),
mustard bottle (17.5cm × 9.3cm × 5.5cm), gochujang bottle
(17.4cm × 6.6cm × 4.1cm); [OBJ B] spice jar (8.0cm ×
4.0cm × 4.0cm), pepper container (8.2cm × 5.8cm × 3.1cm),
biscuit pack (10.5cm × 5.6cm × 2.5cm)

Randomization: The shelf is placed on the left or right end
of the table with randomized orientation between 0 and 30
degrees. [OBJ A] and the white plate are randomly placed
on the second or third level of the shelf. The wooden board
and [OBJ B] are randomly placed on the other half of the
table. We ensure that center of the board and [OBJ B] are at
least 30cm away from base of the shelf.

3) CabinetStore (4 stages): Open the drawer with blue
handle in the cabinet, put an office supply inside, and close
the drawer.

Task Prompt: Store [OBJ] in the drawer with blue handle.
Large objects: cabinet (80cm × 71cm × 40cm,

https://www.amazon.com/gp/product/B0CHHTZ52F/

ref=ewc_pr_img_12?smid=A38QU35WKLBIKI&psc=1)
Randomized objects: computer mouse (10.5cm × 6.5cm

× 3.8cm), tape (10.6cm × 6.4cm × 6.3cm), screw driver

(18.8cm × 3.2cm × 3.2cm), plug (4.9cm × 4.9cm × 5.4cm),
staple container (10.1cm × 5.9cm × 4.0cm)

Randomization: The cabinet is placed on the left or right
end of the table, with its back aligned to the table edge. The
office supply is randomly placed on a wooden tray on the
other half of the table. We ensure that after fully opening the
drawer, the office supply is at least 20cm from edge of the
drawer.

4) DrawerStore (6 stages): Open a drawer with blue
handle, put two personal care items inside, and close the
drawer.

Task Prompt: Arrange [OBJ A] and [OBJ B] in the drawer
with blue handle.

Large objects: drawer (80cm x 60cm x 23cm,
https://www.amazon.com/gp/product/B0BJPLBSHQ/

ref=ewc_pr_img_1?smid=A2XKE81PYMCHT4&psc=1)
Randomized objects: brush (8.4cm × 6.4cm × 5.4cm),

sunscreen bottle (18.9cm × 5.7cm × 3.8cm), soap (9.4cm
× 5.4cm × 2.5cm), toothpaste (14.1cm × 5.7cm × 3.6cm),
sanitizer bottle (17.0cm × 6.8cm × 4.5cm)

Randomization: The drawer is placed on the left or right
end of the table, with its back aligned to the table edge. We
randomly select two personal care items and place them on
a wooden tray on the other half of the table. We ensure that
after fully opening the drawer, the personal care items are at
least 20cm from edge of the drawer.

5) Tidy (8 stages): Clean up the table by putting 4 toys
on the table into a bin.

Task Prompt: Sort all the toys into the black bin.
Large objects: black bin
Randomized objects: stuffed carrot (17.2cm × 4.5cm ×

4.5cm), stuffed corn (21.3cm × 5.7cm × 6.0cm), stuffed owl
(15.0cm × 7.6cm × 6.6cm), stuffed dog (18.7cm × 7.8cm ×
8.4cm), stuffed dice (6.6cm × 6.6cm × 6.6cm), tiny bottle
(7.4cm × 2.9cm × 2.9cm), toy teapot (15.1cm × 12.5cm ×
12.5cm), toy banana (8.8cm × 2.9cm × 4.0cm), toy corn
(12.0cm × 3.8cm × 3.8cm), play-doh container (7.6cm ×
6.3cm × 6.3cm)

Randomization: The bin is placed on the left, right, or
front end of the table with randomized orientation between
0 and 180 degrees. The toys are scattered on the other half
of the table. We ensure the toys are at least 20cm away from
edge of the bin.

https://www.amazon.com/gp/product/B0CHHTZ52F/ref=ewc_pr_img_12?smid=A38QU35WKLBIKI&psc=1
https://www.amazon.com/gp/product/B0CHHTZ52F/ref=ewc_pr_img_12?smid=A38QU35WKLBIKI&psc=1
https://www.amazon.com/gp/product/B0BJPLBSHQ/ref=ewc_pr_img_1?smid=A2XKE81PYMCHT4&psc=1
https://www.amazon.com/gp/product/B0BJPLBSHQ/ref=ewc_pr_img_1?smid=A2XKE81PYMCHT4&psc=1

(a) Cook

(b) Replace

(c) Cabinet Store

(d) Drawer Store

(e) Tidy

Fig. 5: Example scene layouts for real world evaluation.

